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] ABSTRACT

‘jax the clagsical level, when one considers boundary value problems for
nonlinear scalar first order partial differential equations there are parts of
the boundary where one does not expect to be able to prescribe boundary
data. Likewise, uniqueness theorems can be proved for solutions which are
prescribed only on parts of the boundary. However, globally defined classical
solutions of first order nonlinear problems are rare, owing to the formation
of "shocks". This theoretical difficulty has recently been overcome for
equations of Hamilton-Jacobi type via the development of the theory of

viscosity solutions, a sort of generalized solution for which good existence

and unigqueness theorems hold. This note is concerned, in the context of
viscosity solutions, with identifying parts of the boundary which are
irrelevant for a given equation from the point of view of requiring data in
order to prove uniqueness. This involves knowing when a viscosity solution of
an equation (in the viscosity sense) in the interior of the domain may be
extended by continuity to a solution in the viscosity sense to points on the
boundary. The results obtained to this effect are supplemented by examples
delimiting their sharpness. A

AMS (MOS) Subject Classifications: 35D99, 35F30
Key Words: Hamilton-Jacobi equations, viscosity solutions, unigueness,

boundary value problem, first - order nonlinear partial
differential eguations.
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Viscosity Solutions of Hamilton-Jacobi Equations at the Boundary
by

Michael G. Crandall and Richard Newcomb

Introduction.

We bhegin by recalling an important notion of generalized solutions for scalar
nonlinear first order partial differential equations. Llet K be a subset of R ana
P:XxBxR? + R be continuous (L., F ¢ cixxmx®)). A function u € C(K) is called a
viscosity solution of F(y,u,Du) € 0 on K if for each real-valued function ¢ which is
continuously differentiable in a neighborhood of K and each local maximum 2z ¢ X of
u - ¢ relative to K one has
(0.1) P(z,ulz),D¢(z)) € 0.

Here DY = (¢Y1'-'--1W§") is the gradient of ¢. We will use the notation c‘(x) to mean
the set of functions which are defined and continucusly differentiable in a
neighborhood of X. Similarly, a viscosity solution of F(y,u,Du) > 0 in X is a

u ¢ C(X) such that for every ¢ ¢ c‘(x) and local minimum 2z ¢ X of u = ¢ relative to ¥
one has

(0.2) F(z,u(z),09(z)) > 0.

A viscosity solution of F = 0 on K is a function which is a viscosity solution of both
r<Oand F > 0. We also call viscosity solutions of P € 0 (F > 0) viscosity
subsolutions (respectively, supersolutions) of F = 0. Observe that these notions do
not require u to be anywhere differentiable. Indeed, although we will not do so here,
there are circumstances when {t is appropriate to require only a semicontinuity of u
rather than continuity. The set K is also general - we have not yet restricted it in

any way - but we will primarily be concerned with cases in which K satisfies

f C K C Q, where § denotes an open subset of KR!, Q is its closure and 32 is its °C€S5Slon For
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The notion of viscosity solutions has become important in providing a theoretical
basis for the interaction between eguations of Hamilton-Jacobi type, control theory
and differential games. The first uniqueness theorems using this notion are proved in
Crandall and Lions [4). Crandall, BEvans and Lions (3] provides a simpler introduction
to the subject while the book Lions [8] and the review paper Crandall and Souganidis

[6] provide a view of the scope of the theory and the references to much of the recent

b.* literature.
A While one primarily had the case in which X is open in mind in the theory
referred to above, [4, Remark 1.13] pertained to the general case. Moreover, in

{4,Proposition V.1] it is proved that a viscosity solution of

(0.3) . + H(x,t,u,Du) = 0 on Ox(0,T)

where O is an open subset of R and Du = (ux1,....,\n,(“) is the spatial gradient of u,
which happens to extend continuously to 0x(0,T]) is also a viscosity solution on the
set O0x(0,T). See also [3,lLemma 4.1]. Of course, (0.3) is subsumed under the general
case above by putting M = N + 1, yq4 = Xq,eess Yyoq = Xy¢ and yy = t, and
P(Y,u,(PgresssPheq)) = Pyaq + BU(Yqroo oo ¥y) o ¥Reqr0o(Pyroce,py))e
It is further reuatke.d in (4] that this extension property depends on a certain
monotonicity of the equation in the direction of the normal to the domain, and this is
the point we will examine in some generality in this note.

Our current interest in this point is partly generated by recent remarks of R.
Jensen [7]. Jensen had the idea of formulating the uniqueness theorem on arbitrary
closed sets, a formulation with attractive features. Our main results, which we
introduce and prove in Section 1, are criteria which identify boundary points at which
an inequation is automatically satisfied in the viscosity sense i{f it holds in the
interior of a set, extending the above mentioned result for (0.3). Examples
establishing the sharpness of the result are also given, and we formulate

corresponding uniqueness theorems.
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Section 1. The Extension Theorem and Examples

In this section £ denotes an open subset of N and 30 is its boundary. We -
consider sub -~ and supersolutions u € C(a) of an equation F = 0 on @ and define a
subset I, of 3R (which we call the part of 30 irrelevant for F). 1In nice situations u
is then a sub - or supersolution (as appropriate) of F = 0 on
Q s Ipe Ve will be concerned about how general u, @ and F may be and still have the
result hold. With thia in mind, we shall make the definitions for a general open set

. We need to define an appropriate set of normals to a point

z ¢ 3. The open ball of radius r centered at z in ®! will be denoted by

Br(z)3 i.e.

Be(z) = {y ¢ B |y - z| <1}

Definition 1. let £ € 3Q. Then V ¢ ﬂ'\[o} is an inward normal to Q at z if there is
a A > 0 for vhich the open ball of radius |Av| centered at £ + AV is contained in @,
i.e,

Blavl(z + Av) C Q.

The set of all inward normals to R at £ € 3N is denoted by Wq(2).

Another description of Ng(z) can be given the following way: For each

y ¢ ®! there are points of 3R which are nearest y. Let Py be the set of such points:
(1.1) Py=f{2¢3: |y-z|<|y-wl for weanl.

Then

(1.2) Ng(z) = {AM(y = 2) : y ¢ 2, z € Py, A > 0},

that is, the inward normal vectors are just those in the directions from z to points

in Q for which z is a nearest point in 3. We remark that there are a variety of

choices for the definitions of “"normal"™ and “"tangent" vectors to an arbitrary set. We
are using a notion appropriate for our purposes - as regards others and relationships
among them, see Clarke (2] and Aubin and Ekeland [1]. The reader can easily convince

himself that Ng(z) may be empty and it may be ®*\{0} when z ¢ 31.
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Definition 2. let z ¢ 3. Then z ¢ Ip if there is an r > 0 such that for all
y € 32 (1 B (2) and all v & Ng(y) and all (u,p) ¢ Sx#!

(1.3) Fly,u,p + v) < Fly,u,p).

In other words, z is irrelevant for F if F is nonincreasing in the inward normal
directions in a neighborhood of z. Of course, I, depends on 3 as well as P, but we
won’t need to indicate this in this note.

Remark. Observe that the set of vectors v for which (1.3) holds for all
p ¢ ®! is closed under addition. Using this and the continuity of P we deduce that if
z € I then

F(z,u,p + v) € P(z,u,p)
for all Vv in the closed convex hull of 11;*:up Nq(y), which may well be a much larger
set than Rg(z).

We would like to prove that if u ¢ c(a) is a viscosity sub - or supersolution of
F =0 in R, then it is algo a viscosity sub ~ or supersolution in @ + 1w but this is
not true without further restrictions. To formulate our first result we still need to
define "regular points" of 3Q. These will be defined by properties of the function
(1.4) aly) = inf{]y - w|3: w € 3a},
which is the square of the distance from y to 3Q. Associated with 4(y) is the mapping
P of (1.1). Indeed

By = {w € 30: a(y) = ly - w|2 }.
If Py is a singleton (i.e., there is only one point in 3Q nearest y), we will abuse
notation and also use Py to denote this closest point.
Definition 3. Let z ¢ 32, Then z is regular for §I if there is an r > 0 such that if
y € Br(‘) N 2, then Py is a singleton, 4 is Adifferentiable at y and
(1.5) Dd(y) = 2(y - Py).
Remark. It is a standard and elementary exercise to show that if Q is of class c2

near z € 3, then z is regular for §l.
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Theorem 1. let ¥ € C(Ixmx@). Let z € I, be regular for @, u ¢ C(8 , Ig) be
Lipachits continuous near z and u be a viscosity solution of F < 0 (F > 0) on §. Then
u is also a viscosity solution of F € 0 (respectively, * > 0) on

Q + {z}. 1In particular, if u is a viscosity solution of F = 0 on @, then it is a

viscosity solution on 8 , {z]}.

Before proving this result, we give two examples. The first shows that the
restriction to Lipschitz continuous u's is necessary in this generality, while the

second shows that if z is not regular for £ the result may fail.

Example 1. Consider the situation £ = (0,1) and

Pix,u,u') = x®u' - 1=0,
where 0 < a < 1. In this example, 0 ¢ I, since F(0O,u,p) is independent of p and
hence is nonincreasing in all directions. Moreover, 0 is clearly regular for . The
function u = x“")/(i-c) is a classical (and hence viscosity) solution of P = 0 on
Q. However, u is not Lipschitz continuous near 0. If ¢(x) = x then u - ¢ has a

minimum relative to S-l = {0,1] at 0 but F(0,u(0),9'(0)) = -1 < 0, s0o u is not a

viscosity supersolution on [0,1).

Example 2. Let M ~ 2 and (x,y) denote points of Rzo Put ::c;‘.\_-_\:_ =
et Y
WEINSTOYS

Ra{(x,y) ¢€R:0<cy<x, 0<x<1}

(1.6) Pix,¥,0,0,0y) = Uy + 3(/y)uy.
Ve have

g it (x,y) = (0,0).
No((x,y)) = {M2x,=1): A > 0} 1f (xy) = (xx®), 0 ¢ x <1

{t0,2): 2 > o} if (x,¥) = (x,0) , 0 < x < 1.
and it is straightforward to check that (0,0) € Iy. For example, F is nonlncr.llinq‘

in a direction v = ("x"’y) at a point (x,xz) exactly when (using the linear form (1.6)

of P) .

2
Ve + IV, e v vy < 0. 5 .,-’_::*f.-
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For the normal v = (2x,=1) this quantity is 2x - 3x < 0. Now u = 0 is a Lipschitz
continuous viscosity solution of F = 0 in i. The function 0 - x = - x has a maximum
on 5 at {0,0), but P(0,0,(1,0)) = 1 > 0, so 0 1s not a viscosity subsolution on R .
(0,0). (We conclude that (0,0) is not regular and the requirement of regularity

cannot be relaxed.)

Proof of Theorem 1. let u ¢ C(R + Ig) be (locally) Lipschitz continuous and a

viscosity solution of F < 0 in . Let z ¢ Ip be regular for . Put
R, =0 {z}
It ¢ € C‘(Qz) and u - ¢ have z as a local maximum relative to £, (and hence relative
to a neighborhood of 2z in 5). We seek to prove that
(1.7) P(z,ul(z),DP(z)) < 0.
Without loss of generality we may assume that for each small r > 0
(1.8) uly) -~ ¢(y) < ulz) - ¢(z) for y € 2 ana ly - 2| = x,
that is, the maximum is strict. This is because ¢ can be perturbed to
oly) + |y - 2'2 which makes z a strict maximum without affecting Dy(z). Let
€ > 0. We claim that
(1.9) Y iy} = u(y) - @(y) - €/3ly)
has a local maximum y. € R relative to 2 satisfying
(1.10) Ye *zas € + 0.
Indeed, because u - ¢ is continuous, for each small r > 0 we can find
w € B .(z) (1 @ such that (1.8) holds with w in place of z:
(1.11) uly) - ¢(y) < u(w) - @(w) for y € @ and ly - 2| =z,
Now consider Y. in the set B (2) (i . We will argue informally, as it is best if the
reader convinces himself of the validity of what follows: Y. tends to -* on 3Q. On
the other hand, we can guarantee that Yc(y) < Yc(w) on |y - z| = r awvay from 3R by
choosing € small, because of (1.11), and we can make Y. (w) as close as we please to

u(w) = ¢(w). The existence of local maxima y. satisfying (1.10) follows, as does the

fact that we can quarantee
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(1.12) Yelye) *+ ulz) - ¢(z).
Rext let z, be nearest points to ye in 3Q: 2, = Pyg. Then, by the assumption that u
is a viscosity subsolution in R, the regularity of z and (1.5)
(1.13) . Plye,ulye) DOlye) = 2elye - 2¢)/(d(ye))?) < 0.
With future uses in mind, we put
(1.14) Pe = DO(Ye), Ve = (yg = 2¢), Ay = 2¢/(d(y 12,
and write (1.13) as
. F(yeoulye)ePe = AgV¢) = Flze,ulye)sPe = Agve) +
(1 + Plzg,ulye)Pe = Agve) € 0,
We treat the various terms of this inequality: First, since u is Lipschitz
continuous,
(1.16) IPe = Agve!l < L
where L is a Lispschitz constant for u in the neighborhood of z in which y¢ lies.
(See (4, lewma IX.3]). Since yg, zo * £, we may use (1.15) and the continuity of F to
conclude that the difference comprised by the first two terms in (1.14) tends to 0
with €. As regards the last term, observe that z, + z and V¢ € Np{z.) isply, because
. ¥ € 1y, that
(1.17) F(Eg ,ulYe)oPg = AgVe) » Fizg,ul(ye) Pe)e.
Using (1.17) and the prior remark together with (1.15), we may pass to the limit as ¢
+ 0 to find (1.7) as desired. The case of supersolutions is handled in the parallel
way, and the case of solutions follows from the sub and super cases.

At this point we have not even recovered the results for (0.3) mentioned above,
as they do not require Lipschitz continuity of u. By Example 1 it is clear that
further restrictions are needed on P in order to deal with more general u's. looking
at the proof of Theorem 1 and Example 1 will make the condition we are about to

formulate more palatahle.




Definition 4. let z € Iy. Then z is regular for F if for all sequences z, ¢ 31 and

l Yp t (Ng(zy) + z,) N 8 convergent to z and A, > 0 satisfying

(1.18) Anlyy - z“|2 + 0 ‘
J we have :SE :::'
i (1.19) 11:,&"‘ F(¥n,0,P = Aplyn = 25)) = Flz,,u,p = Ap(y, ~ 2,)) 2 0 if_ S }‘
' uniformly for bounded u and p.

In particular, the continuity requirement we are imposing is laid only on the
behaviour of F near z and in appropriate directions. We have:
! Theorem 2. let P € cu.lexn"). Let z € Ip be regular for Q and P, u € C(R + Ip) be a
vigcosity solution of F < 0 (P > 0) on fl. Then u is also a viscosity solution of F <
0 (respectively, F 2 0) on & + {z}. InApatticular, if u is a viscosity solution of F
= 0 on R, then it is a viscosity solution on Q + {z}.

Proof. The proof follows the proof of Theorem 1 exactly up to the discussion of

N RV

(1.15). with the notation (1.14), the relation (1.16) no longer holds for any L.

e

However, pe is bounded and if we observe that

Aelvel? = Aglye = 2¢]% = 2e/a(y) + 0,
as follows immediately from (1.12) and the definition of Y., then the assumption that [
z is regular for F may be used to claim that

lim inf(Fly_,uly.),p. - Aeve) - F(ze,u(ye),pc - Aeve)) >0
€*0

and the proof is completed as before.

T s e s

.

Example 3. We may use the gituation of Fxample 1 to show that the “"rate" in (1.18) is

o0

sharp among power laws. Indeed, with the notation of Example 1, if z; = 0 for all n

and y, is a sequence of positive numbers convergent to zero which satisfies

AnlYn = 'ana = xn(yn)“n +0

we have
F(Yn.\hP - Anyﬂ) - F(O,u,p ~ A“Y“) = Y: ) AnY;m +0
uniformly for bounded p. That is, the assumptions of Theorem 2 are satisfied except 4
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that the exponent 2 in (1.18) is replaced by 1 + a. Yet we know that the viscosity
solution x{1°%)/(1 - a) of ¥ = 0 on (0,1) is not a supersolution on [0,1).

Remarks. The proof of Theorems 1 and 2 couples the general line of argument used in
the special case (0.3) in [4] and [3] with the use of the distance function to replace
the particular construction used in this case. Use of the distance function is
frequently advantageous in proofs in this subject (see, for example, Lions [8], (9]
and Jensen {7}). By the way, it is an elementary (and standard) exercise to show that
ulx) = (d(x))1/2 15 a viscosity solution of |Du|2 = 1 in  whether or not 39 is
smooth. It is the only viscosity solution of this equation vanishing on 3§l (see

{8] anda [4]).

rinally, we formulate uniqueness theorems corresponding to Theorems 1 and 2.

There are many possible variants of these results, and these are choosen to simply

illustrate the interaction between Theorems 1 and 2 and uniqueness. Corresponding
. Theorem 1 we have:
Theorem Ul. Iet R be a bounded open subset of R, letr¢ c(axmﬂ‘) satisfy:
Yor R > 0 there is a strictly increasing function Yp such that YR(0) = 0
and F(y,u,p) = Fy,v,p) > Yg{u =~ v) for y ¢ 5. p ¢ # and u,v € [-R,R].
Let u,v € cta) be Lipschitez continuous, u be a vigscosity solution of F € 0 and v be a
viscosity solution of F > 0 on {i. Let each point of -i, be regular for . let u< v

on 30\1p, then u € v in Q,

5 Corresponding to Theorem 2 we have

Theorem U2. let 1 and P satisfy the assumptions of Theorem Ul. In addition, assume
that each point of Ip is regular for O and F and that for each R there is a continuous
function gp:[0,®) + (0,%) with gp(0) =0 such that

(1.20)  P(x,u,A(x = ¥)) = P(y,u,Alx = ¥)) > - gplA|x = y[% + [x = y])

for x,y ¢ 2, 2 >0, and fa]| € Re 1t u, v € (), u be a viscosity solution of F <

0, v be a viscosity solution of F > 0 and u € v on 38\Iy. Then u < v in Q.




Remark. The condition (1.20) on ¥ is a weakened version of a uniqueness condition
used in [4). The relevance of such a "one-sided” condition was pointed out by R.
Jensen. See also [5] for uniquess (in unbounded domains) and existence using this
condition, as well as a generalization of it.

The proofs of Theorems U1 and U2 are, given Theorems 1 and 2, are routine and
will not be given here. See, however, Jengen [7] concerning general formulations of

results on closed sets.
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ABSTRACT (cont.)

solutions of first order nonlinear problems are rare, owing to the formation
of "shocks". This theoretical difficulty has recently been overcome for

equations of Hamilton-Jacobi type via the development of the theory of

viscosity solutions, a sort of generalized solution for which good existence
and uniqueness theorems hold. This note is concerned, in the context of
viscosity solutions, with identifying parts of the boundary which are

ii irrelevant for a given equation from the point of view of requiring data in

order to prove uniqueness. This involves knowing when a viscosity solution
of an equation (in the viscosity sense) in the interior of the domain may be
extended by continuity to a solution in the viscosity sense to points on the
L boundary. The results obtained to this effect are supplemented by examples
h delimiting their sharpness.
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